Cellular transformation and activation of the phosphoinositide-3-kinase-Akt cascade by the ETV6-NTRK3 chimeric tyrosine kinase requires c-Src.

نویسندگان

  • Wook Jin
  • Chohee Yun
  • Amy Hobbie
  • Matthew J Martin
  • Poul H B Sorensen
  • Seong-Jin Kim
چکیده

The ETV6-NTRK3 (EN) chimeric tyrosine kinase, a potent oncoprotein expressed in tumors derived from multiple cell lineages, functions as a constitutively active protein-tyrosine kinase. ETV6-NTRK expression leads to the constitutive activation of two major effector pathways of wild-type NTRK3, namely, the Ras-mitogen-activated protein kinase (MAPK) mitogenic pathway and the phosphoinositide-3-kinase (PI3K)-Akt pathway mediating cell survival, and both are required for EN transformation. However, it remains unclear how ETV6-NTRK3 activates Ras-Erk1/2 and/or PI3K-Akt cascades. Here, we define some aspects of the molecular mechanisms regulating ETV6-NTRK-dependent Ras-Erk1/2 and PI3K-Akt activation. We show that ETV6-NTRK3 associates with c-Src, and that treatment with SU6656, a c-Src inhibitor, completely blocks ETV6-NTRK-transforming activity. Treatment of NIH3T3 cells expressing ETV6-NTRK3 with SU6656 attenuated the activation of Ras-Erk1/2 and PI3K-Akt. Suppression of c-Src by RNA interference in NIH3T3-ETV6-NTRK3 cells resulted in markedly decreased expression of cyclin D1 and suppression of activation of Ras-Erk1/2 and PI3K-Akt. However, in Src-deficient cells, the ETV6-NTRK3 failed to activate the PI3K-Atk pathway, but not the Ras-Erk1/2 pathway. Therefore, these data indicate that ETV6-NTRK3 induces the PI3K-Akt cascade through the activation of c-Src.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation.

There is increasing interest in the potential role of the NTRK family of neurotrophin receptors in human neoplasia. These receptor protein tyrosine kinases (PTKs) are well-known mediators of neuronal cell survival and differentiation, but altered NTRK signaling has also been implicated in mesenchymal, hematopoietic, and epithelial malignancies. We recently identified a novel gene fusion involvi...

متن کامل

Mutation of the salt bridge-forming residues in the ETV6-SAM domain interface blocks ETV6-NTRK3-induced cellular transformation.

The ETV6-NTRK3 (EN) chimeric oncogene is expressed in diverse tumor types. EN is generated by a t(12;15) translocation, which fuses the N-terminal SAM (sterile α-motif) domain of the ETV6 (or TEL) transcription factor to the C-terminal PTK (protein-tyrosine kinase) domain of the neurotrophin-3 receptor NTRK3. SAM domain-mediated polymerization of EN leads to constitutive activation of the PTK d...

متن کامل

v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation.

v-Crk induces cellular tyrosine phosphorylation and transformation of chicken embryo fibroblasts (CEF). We studied the molecular mechanism of the v-Crk-induced transformation. Experiments with Src homology (SH)2 and SH3 domain mutants revealed that the induction of tyrosine phosphorylation of cellular proteins requires only the SH2 domain, but both the SH2 and SH3 domains are required for compl...

متن کامل

Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway.

Semaphorins are cell surface and secreted proteins that provide axonal guidance in neuronal tissues and regulate cell motility in many cell types. They act by binding a family of transmembrane receptors known as plexins, which belong to the c-Met family of scatter factor receptors but lack an intrinsic tyrosine kinase domain. Interestingly, we have recently shown that Plexin-B1 is highly expres...

متن کامل

Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication

SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 7  شماره 

صفحات  -

تاریخ انتشار 2007